nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.42 90-97
实验动物肺炎克雷伯杆菌实时荧光qPCR检测方法的建立和优化
基金项目(Foundation):
邮箱(Email): yusheng.wei@pku.edu.cn;lixiaying@pku.edu.cn;
DOI: 10.16791/j.cnki.sjg.2025.01.012
摘要:

该研究旨在建立和优化一种针对实验动物肺炎克雷伯杆菌(Klebsiella pneumoniae,KP)的TaqMan实时荧光定量PCR(quantitative polymerase chain reaction,qPCR)检测方法,以提高检测的灵敏度、特异性和准确性。通过文献调研和序列比对,选取了KP的phoE基因作为目标序列,设计并合成一对特异性引物和探针,对qPCR反应体系和退火温度进行了系统优化,采用梯度稀释法测定了该方法的线性范围、灵敏度和检测限。通过分析不同浓度标准品的qPCR曲线,评估了该方法的特异性和方法再现性。最后将该方法用于各种临床样品检测。优化后的qPCR方法显示出良好的线性关系,线性范围为2.7×104~8.64 copies/μL,线性回归方程为y=–3.83x+42.865,相关系数(R2)为0.992。检测限达到8.64 copies/μL,表明该方法具有较高的灵敏度。特异性实验结果表明,该方法仅对KP产生特异性扩增,与其他常见病原体无交叉反应。统计不同操作人员对检测极限样品的10个平行Ct值,结果显示,Ct值的相对标准偏差均低于2%,说明方法具有良好的再现性。共检测26份临床样本,有3份临床样本为阳性,其他均为阴性。本研究成功建立了一种高灵敏度、高特异性的KP qPCR检测方法,为实验动物中的KP感染提供了一种快速、准确的分子诊断工具。

Abstract:

[Objective] Klebsiella pneumoniae(KP) is a gram-negative bacterium of the Enterobacteriaceae family, which is widely present in nature and one of the normal flora of the human and animal gastrointestinal and respiratory tracts. In hosts with compromised immune systems or chronic diseases, KP can cause various infections, including pneumonia, sepsis, and meningitis, posing a serious threat to human health. In addition, KP is one of the pathogens that must be detected and excluded in laboratory animals, particularly specific-pathogen-free mice. Therefore, to effectively control and prevent KP infections, rapid and accurate detection methods are particularly important. This study aims to establish a TaqMan real-time fluorescence quantitative PCR(qPCR) detection method for KP in laboratory animals and optimize the reaction system and program of this method to enhance its sensitivity, specificity, and accuracy. [Methods] Through literature research and sequence alignment, the phoE gene of KP is selected as the target sequence, and a pair of specific primers and probes are designed and synthesized using the software Oligo7. To achieve the lowest cycle number with the strongest fluorescence intensity, the reaction conditions are optimized by changing the final concentrations of primers and probes and the annealing temperature using KP-positive nucleic acid as a template. The linear range, sensitivity, and detection limit of the method are determined using a gradient dilution method. The specificity and method reproducibility are assessed by analyzing the qPCR curves of standards at different concentrations. Finally, the method is applied for detecting various clinical samples. [Results] The optimal annealing temperature for the optimized qPCR method was 50 ℃, with the optimal primer and probe concentrations at 0.2 μmol/L and 0.1 μmol/L, respectively. The optimized qPCR method demonstrated a good linear relationship, with a linear range of 2.7×104 to 8.64 copies/μL, a linear regression equation of y=-3.83x+42.865, and a correlation coefficient(R2) of 0.992. The detection limit of the method reached 8.64 copies/μL, indicating high sensitivity. The specificity test results showed that the method amplified KP specifically, with no cross-reaction with other common pathogens, indicating good specificity. Two different operators, at two different times, using different models of qPCR instruments, conducted 10 replicate experiments on samples at the detection limit. The statistical results of the 10 parallel experiments showed that the relative standard deviation of Ct values was below 2%, indicating good method reproducibility. A total of 26 clinical samples were tested, with 3 positive and 23 negative. [Conclusions] This study successfully established a highly sensitive and specific KP qPCR detection method, providing a rapid and accurate molecular diagnostic tool for KP infections in laboratory animals. This method helps to quickly identify KP at the early stages of infection, allowing for timely treatment measures and reducing the risk of disease transmission. Furthermore, this qPCR detection method can be further integrated into the routine health monitoring of laboratory animals, enhancing the biosafety level of laboratory animal facilities. At the same time, this method can also be extended to the detection of clinical samples, providing clinicians with a more accurate diagnostic basis and guiding clinical treatment and infection control.

参考文献

[1]王帅,刘根,涂文姬,等.一株肺炎克雷伯菌的分离鉴定及生物学特性分析[J].微生物学通报,2024,51(7):2586-2598.WANG S,LIU G,TU W J,et al.Isolation and identification of a Klebsiella pneumoniae strain and analysis of its biological characteristics[J].Chinese Journal of Microecology,2024,51(7):2586-2598.(in Chinese)

[2]贾艳,孙长江,韩文瑜,等.肺炎克雷伯菌研究进展[J].微生物学杂志,2006,26(5):75-78.JIA Y,SUN C J,HAN W Y,et al.Progress in Klebsiella pneumoniae research[J].Journal of Microbiology,2006,26(5):75-78.(in Chinese)

[3]MARTIN R M,ВACHMAN M A.Colonization,infection,and the accessory genome of Klebsiella pneumoniae[J].Frontiers in Cellular and Infection Microbiology,2018(8):4.

[4]ARATO V,RASO M M,GASPERINI G,et al.Prophylaxis and treatment against Klebsiella pneumoniae:Current insights on this emerging anti-microbial resistant global threat[J].International Journal of Molecular Sciences,2021,22(8):4042.

[5]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.实验动物微生物学检测方法:GB/T 14926-2001[S].北京:中国标准出版社,2022.General Administration of Quality Supervision,Inspection and Quarantine,Standardization Administration of the People’s Republic of China.Laboratory animals-Microbiological examination methods:GB/T 14926-2001[S].Beijing:Standards Press of China,2022.(in Chinese)

[6]ASSONI L,COUTO A J M,VIEIRA B,et al.Animal models of Klebsiella pneumoniae mucosal infections[J].Front Microbiol.2024,3(15):1367422.

[7]刘丽艳,韩艳梅,李文超,等.实验动物潜在生物安全威胁及降低风险的建议[J].实验技术与管理,2020,37(2):264-266,278.LIU L Y,HAN Y M,LI W C,et al.Potential biosecurity threats to laboratory animals and recommendations for risk reduction[J].Experimental Technology and Management,2020,37(2):264-266,278.

[8]赵娟,刘志远,刘贵建.肺炎克雷伯菌动物感染模型及在中药抗感染应用中的研究进展[J].国际检验医学杂志,2019,40(3):269-272,276.ZHAO J,LIU Z Y,LIU G J.Research progress on Klebsiella pneumoniae animal infection models and their application in the study of traditional Chinese medicine for anti-infection[J].International Journal of Laboratory Medicine,2019,40(3):269-272,276.(in Chinese)

[9]ASSONI L R,CONVERSO T R,et al.Current stage in the development of Klebsiella pneumoniae vaccines[J].Infectious Diseases and Therapy,2021,10(4):2157-2175.

[10]KARAMI-ZARANDI M,RAHDAR H A,ESMAEILI H,et al.Klebsiella pneumoniae:An update on antibiotic resistance mecha nisms[J].Future Microbiol,2023(18):65-81.

[11]中华人民共和国国家质量监督检验检疫总局.实验动物肺炎克雷伯杆菌检测方法:GB/T 14926.13-2001[S].北京:中国标准出版社,2001-08-29.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China.Detection method for Klebsiella pneumoniae in laboratory animals:GB/T 14926.13-2001[S].Beijing:Standards Press of China,2001-08-29.(in Chinese)

[12]李挺,张丽芳,刘星,等.肺炎克雷伯氏菌特异性抗原的筛选与鉴定[J].中国比较医学杂志,2010,20(7):21-26.LI T,ZHANG L F,LIU X,et al.Identification of specific diagnostic antigen for Klebsiella pneumoniae[J].Chinese Journal of Comparative Medicine,2010,20(7):21-26.(in Chinese)

[13]徐云明,魏利斌,周弇扬,等.肺炎克雷伯菌环介导等温扩增技术检测方法的建立[J].中国畜牧兽医,2018,45(11):3003-3010.XU Y M,WEI L B,ZHOU Y Y,et al.Establishment of a loop-mediated isothermal amplification (LAMP) method for the detection of Klebsiella pneumoniae[J].Chinese Journal of Animal Husbandry and Veterinary Medicine,2018,45(11):3003-3010.(in Chinese)

[14]王帅,杨艳歌,吴占文,等.重组酶聚合酶扩增、重组酶介导等温扩增及酶促重组等温扩增技术在食源性致病菌快速检测中的研究进展[J].食品科学,2023,44(9):297-305.WANG S,YANG Y G,WU Z W,et al.Research progress on recombinase polymerase amplification,recombinase-mediated isothermal amplification,and enzyme-assisted recombinase isothermal amplification technologies in rapid detection of foodborne pathogens[J].Food Science,2023,44(9):297-305.(in Chinese)

[15]李富祥,廖德芳,姚俊,等.肺炎克雷伯菌Taq Man荧光定量PCR检测方法的建立[J].中国兽医科学,2014,44(12):1231-1235.LI F X,LIAO D F,YAO J,et al.Development of a Taq Man fluorescent quantitative PCR detection method for Klebsiella pneumoniae[J].Chinese Journal of Veterinary Science,2014,44(12):1231-1235.(in Chinese)

[16]冉艳.肺炎克雷伯菌荧光定量PCR检测方法的建立和临床应用[D].杭州:浙江大学,2015.RAN Y.Establishment and clinical application of fluorescent quantitative PCR detection method for Klebsiella pneumoniae[D].Hangzhou:Zhejiang University,2015.(in Chinese)

[17]郭学波,邱振乾,张超,等.猪源肺炎克雷伯菌荧光定量PCR检测方法的建立与应用[J].中国动物检疫,2023,40(2):112-116.GUO X B,QIU Z Q,ZHANG C,et al.Establishment and application of a fluorescent quantitative PCR detection method for porcine Klebsiella pneumoniae[J].China Animal Quarantine,2023,40(2):112-116.(in Chinese)

[18]马博,卜三平,刘鸽.新疆石河子地区某规模奶牛场奶牛乳房炎链球菌的分离鉴定及药敏试验[J].中国乳业,2020(3):59-63.MA B,BU S P,LIU G.Isolation,identification,and antibiotic sensitivity testing of Streptococcus from mastitis in dairy cows in a large-scale dairy farm in Shihezi,Xinjiang[J].China Dairy Industry,2020(3):59-63.(in Chinese)

[19]崔瑾,陈武,李婉萍,等.黑叶猴源肺炎克雷伯菌的分离鉴定及药敏试验[J].中国兽医科学,2020,50(9):1142-1146.CUI J,CHEN W,LI W P,et al.Isolation and identification of Francois’s langur-derived Klebsiella pneumoniae and drug sensitivity test[J].Chinese Veterinary Science,2020,50(9):1142-1146.(in Chinese)

[20]程序.家兔呼吸道病原菌多重Taq Man荧光定量PCR方法的建立及初步应用[D].南京:南京农业大学,2021.CHENG X.Establishment and preliminary application of a multiplex Taq Man fluorescent quantitative PCR method for respiratory pathogens in rabbits[D].Nanjing:Nanjing Agricultural University,2021.(in Chinese)

[21]潘苑霞,王文基,陈庆涛,等.1株大黄鱼源肺炎克雷伯菌的分离鉴定与致病性分析[J].水产科学,2023,42(2):268-278.PAN Y X,WANG W J,CHEN Q T,et al.Isolation,identification,and pathogenic analysis of Klebsiella pneumoniae from large yellow croaker Larimichthys crocea[J].Fisheries Science,2023,42(2):268-278.(in Chinese)

[22]雷志强,张丁,杨琼秀,等.肺炎克雷伯菌ST23型流行株小鼠肺炎模型的建立[J].中华微生物学和免疫学杂志,2018,38(3):205-210.LEI Z Q,ZHANG D,YANG X Q,et al.Establishment of a mouse pneumonia model for the epidemic ST23 strain of Klebsiella pneumoniae[J].Chinese Journal of Microbiology and Immunology,2018,38(3):205-210.(in Chinese)

[23]张诗渝.肺炎克雷伯杆菌的分离鉴定及其对小鼠的致病性研究[D].南京:南京农业大学,2013.ZHANG S Y.Isolation and identification of Klebsiella pneumoniae and study on its pathogenicity to mice[D].Nanjing:Nanjing Agricultural University,2013.(in Chinese)

[24]赵月,许琦,黄伟健,等.高校实验动物生物安全风险管理探讨[J].实验技术与管理,2024,41(10):242-249.ZHAO Y,XU Q,HUANG W J,et al.Discussion on the biosecurity risk management of laboratory animals in colleges and universities[J].Experimental Technology and Management,2024,41(10):242-249.

基本信息:

DOI:10.16791/j.cnki.sjg.2025.01.012

中图分类号:R-332

引用信息:

[1]李钰钰,姚继英,田永路等.实验动物肺炎克雷伯杆菌实时荧光qPCR检测方法的建立和优化[J].实验技术与管理,2025,42(01):90-97.DOI:10.16791/j.cnki.sjg.2025.01.012.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文