清华大学核能与新能源技术研究院;北方工业大学文法学院;
高温气冷堆是具有第四代反应堆特征的重要堆型,石墨材料作为高温气冷堆中的重要结构材料和慢化剂,其性能对反应堆的设计、运行和维护具有重要意义。针对高温、大载荷条件下石墨摩擦系数测量方法的局限性,该文提出了高温气冷堆用石墨材料摩擦系数测量方法并设计了实验装置,通过模拟高温气冷堆堆芯内的环境参数,确定了石墨摩擦系数测量方法和数据处理方法。实验装置外壳使用不锈钢制造,内部由隔热砖构成腔体并填充保温棉,用石墨加热棒加热,由力传感器采集推进力和拉回力数据,计算摩擦力和摩擦系数。结果表明,该测量方法能够稳定并准确地获得石墨摩擦系数数据,为高温气冷堆相关数值模拟和设计改进提供数据支撑。
275 | 0 | 257 |
下载次数 | 被引频次 | 阅读次数 |
[1]高立本,沈健.高温气冷堆的发展与前景[J].中国核工业,2016(10):24–27.GAO L B, SHEN J. The development and perspective of HTGR[J]. China Nuclear Industry, 2016(10):24–27.(in Chinese)
[2]吴宗鑫.我国高温气冷堆的发展[J].核动力工程,2000,21(1):39–43, 80.WU Z X. The development of high temperature gas-cooled reactor in China[J]. Nuclear Power Engineering, 2000, 21(1):39–43, 80.(in Chinese)
[3]张作义,吴宗鑫,王大中,等.我国高温气冷堆发展战略研究[J].中国工程科学,2019, 21(1):12–19.ZHANG Z Y, WU Z X, WANG D Z, et al. Development strategy of high temperature gas cooled reactor in China[J]. Strategic Study of CAE, 2019, 21(1):12–19.(in Chinese)
[4]徐元辉,左开芬.高温气冷堆的过去、现在和将来[J].高技术通讯,1994(11):39–43.XU Y H, ZUO K F. The past, today and the future of HTGR[J].High Technology Letters, 1994(11):39–43.(in Chinese)
[5]吴宗鑫,张作义.世界核电发展趋势与高温气冷堆[J].核科学与工程,2000, 20(3):211–219, 231.WU Z X, ZHANG Z Y. World development of nuclear power system and high temperature gas-cooled reactor[J]. Chinese Journal of Nuclear Science and Engineering, 2000, 20(3):211–219, 231.(in Chinese)
[6] ZHANG Z Y, DONG Y J, LI F, et al. The Shandong Shidao Bay200 MWe high-temperature gas-cooled reactor pebble-bed module(HTR-PM)demonstration power plant:An engineering and technological innovation[J]. Engineering, 2016, 2(1):112–118.
[7]李晓伟,吴莘馨,张作义,等.高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J].清华大学学报(自然科学版),2021, 61(4):329–337.LI X W, WU X X, ZHANG Z Y, et al. Engineering test of HTR-PM helical tube once through steam generator[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(4):329–337.(in Chinese)
[8]李顺洋,万力,桂南,等.基于弹塑性接触和渗流模型的静密封泄漏计算[J].清华大学学报(自然科学版),2023, 63(8):1264–1272.LI S Y, WAN L, GUI N, et al. Evaluation of leakage rates of static seals based on elastic-plastic contact theories and seepage theories[J]. Journal of Tsinghua University(Science and Technology),2023, 63(8):1264–1272.(in Chinese)
[9]任成,杨星团,李聪新,等.高温堆球床等效导热系数测量实验加热系统设计及可行性验证[J].清华大学学报(自然科学版),2014, 54(8):1068–1072.REN C, YANG X T, LI C X, et al. Heating system design and validation for the pebble bed effective thermal conductivity experiment in a high temperature gas-cooled reactor[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(8):1068–1072.(in Chinese)
[10]雒晓卫,于溯源,张振声,等. HTR-10产生石墨粉尘量的估算及其尺寸分布[J].核动力工程, 2005, 26(2):203–208.LUO X W, YU S Y, ZHANG Z S, et al. Estimation of graphite dust quantity and size distribution of graphite particle in HTR-10[J]. Nuclear Power Engineering, 2005, 26(2):203–208.(in Chinese)
[11]陈志鹏,雒晓卫,于溯源.输送速度对高温气冷堆燃料装卸系统提升段石墨球磨损性能的影响[J].原子能科学技术,2012, 46(增刊2):853–858.CHEN Z P, LUO X W, YU S Y. Effect of feeding velocity on wear behavior of graphite ball under elevating process with HTGR fuel handling system[J]. Atomic Energy Science and Technology, 2012, 46(S2):853–858.(in Chinese)
[12] ARANGANATHAN N, BIJWE J. Comparative performance evaluation of NAO friction materials containing natural graphite and thermo-graphite[J]. Wear, 2016, 358–359:17–22.
[13] GRATTAN P A, LANCASTER J K. Abrasion by lamellar solid lubricants[J]. Wear, 1967, 10(6):453–468.
[14]朱振国,王硕,任勇,等.机械密封用炭石墨材料摩擦磨损性能研究[J].炭素技术,2017, 36(6):34–37.ZHU Z G, WANG S, REN Y, et al. Friction and wear behavior of carbon graphite materials in mechanical seal[J]. Carbon Techniques,2017, 36(6):34–37.(in Chinese)
[15]徐宇轩.机械用炭石墨材料的结构设计与力学、摩擦学性能研究[D].长沙:湖南大学,2022.XU Y X. Structural design and mechanical and tribological properties of carbon-graphite materials for machinery[D].Changsha:Hunan University, 2022.(in Chinese)
[16]雒晓卫,于溯源,盛选禹,等.三种反应堆用石墨摩擦性能比较[J].高技术通讯,2001, 11(5):97–100.LUO X W, YU S Y, SHENG X Y, et al. Friction performance of three kinds of graphite used in nuclear reactors[J]. High Technology Letters, 2001,11(5):97–100.(in Chinese)
[17]全国钢标准化技术委员会(SAC/TC 183).高温气冷堆堆内构件用核级等静压石墨:GB/T 40408—2021[S].北京:中国标准出版社,2021.National Steel Standardization Technical Committee(SAC/TC183). Nuclear grade isostatic graphite for high temperature gas-cooled reactor internals:GB/T 40408—2021[S]. Beijing:China Standards Publishing House, 2021.(in Chinese)
[18]李馨楠,周湘文,卢振明,等.球形燃料元件基体石墨摩擦磨损性能的研究[J].炭素技术,2016, 35(1):1–6.LI X N, ZHOU X W, LU Z M, et al, Friction and wear properties of matrix graphite in spherical fuel element for HTR[J]. Carbon Techniques, 2016, 35(1):1–6.(in Chinese)
[19] STANSFIELD O M. Friction and wear of graphite in dry helium at 25, 400, and 800℃[J]. Nuclear Applications, 1969, 6(4):313–320.
基本信息:
DOI:10.16791/j.cnki.sjg.2024.12.001
中图分类号:TL424
引用信息:
[1]陈泽亮,李嘉旭,桂南等.高温气冷堆用石墨材料高温摩擦系数测量实验装置设计[J].实验技术与管理,2024,41(12):1-6.DOI:10.16791/j.cnki.sjg.2024.12.001.
基金信息:
国家科技重大专项项目(2011ZX06901-003)